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We devised a continual theory Of the thermoelasticity of a disperse medium con- 
sisting of a homogeneous matrix with spherical inclusions of some other material 
distributed in it. 

If the linear scale of fields of mean temperature and deformations of a composite material 
or some other heterogeneous disperse system considerably exceeds the characteristic dimension 
of the inhomogeneities, then it is natural to describe the behavior of the system in continual 
approximation, introducing the effective moduli of elasticity, thermoelastic and thermophysi- 
cal characteristics, etc., relating to the system as a whole. Attempts at calculating the 
effective coefficients of thermoelasticity known to the present authors are based either on 
spatial averaging [1-3] or on the use of the statistical theory of correlation moments [4]. 
A review of the investigations dealing with the determination of the effective properties of 
composite and other microinhomogeneous materials can be found, e.g., in [5, 6]. Below, in 
devising the theory of thermoelasticity of disperse media, we used the method of averaging 
over the ensemble of permissible configurations of the system of inclusions in combination 
with the methods of the theory of self-consistent fields developed in [7, 8]. Earlier on, 
these methods had been successfully used in the analysis of the theological [8], thermophysi- 
cal [9], and elastic [i0] properties of disperse systems, 

The advantages of ensemble averaging in comparison with spatial one were pointed out 
in [10]; in particular, when it is used, there is no need to require that the linear scale 
of the mean fields be much larger than the dimension of the representative physical volume 
containing a large number of discrete inclusions. 

In the known works dealing with the thermoelasticity of composite materials, the authors 
do not take into account the heat liberation within the bulk of the phases and on their bound- 
aries although it is bound to have a palpable effect on the effective thermoelastic char- 
acteristics similarly to the way it manifests itself in the thermophysical properties of 
heterogeneous media [Ii, 12]. Such situations arise, e.g., when a current passes through 
composite material, when it absorbs radiation, when phase or chemical transformations occur 
on phase boundaries, and also in systems containing heat-liberating elements. The method 
used below makes it possible to take internal heat liberation into account in a natural way. 

General Relations. We consider a disperse medium with chaotically distributed spherical 
inclusions with radius a. We regard the materials of the matrix and of the inclusions, and 
also of the medium as a whole, as homogeneous and isotropic. On the surfaces of the inclusions 
and within the bulk of both phases hear'sources with the following powers act: 

Qs=L~ Q~:H~, ] : 0 , 1  (1 )  

( h e r e  and h e n c e f o r t h  t h e  s u b s c r i p t s  0 and 1 d e n o t e  m a g n i t u d e s  r e l a t i n g  t o  t h e  m a t r i x  and t h e  
inclusions, respectively). For the sake of simplicity we take it that the values of Hj, L ~ 
L I do not depend on the temperature. It is assumed that the condition of applicability of 
continual methods I/a >> I. 

We regard the deformation of a medium having inhomogeneous temperature analogously to 
deformation under isothermal conditions [10]. Applying Fourier transform with respect to 
time, we write the equations of motion and the expressions correlating stresses with strains 
and temperatures in both phases in the same form 

- -  ~ D U  : V ~, ~ : (KdivU --BT) ! + 2ME. (2 )  
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Here, density D, the compression modulus K, the shear modulus M, and the coefficient B are 
taken as generalized functions coinciding within the matrix and the inclusions with the cor- 
responding material magnitudes [i0]. Using the apparatus of ensemble averaging, we obtain 
from (2) equations for the mean vector of displacement u, the mean strain and stress tensor 
e and ~ and the temperature m 

- - o 2 d u : v  ~, a = ( / ~ - - [ ~ - - •  s = d i v u ,  (3)  

where the effective density, the moduli k and p, the coefficient 8 and the parameter ~, re- 
ferred to the disperse medium as a whole, are determined by the relations 

d = do+ (d~-- do) p~, k = ko+ (k~-- ko) pv,, ~ = ~o+ ( ~ - -  ~o) P~e, 

= ~o+ ( ~ - -  ~o) pv~-- (k~-- ko) pv~,, (4)  

• = •176 hollo+ n ,HI=  ([~1-- [30) PV~o-- (kl-- ko) pvso, 

and the parameters re, re, ~e~, ~0, ~e0 and y satisfy the following formal relations (cr. 
[7-12]): 

1 [ e *  (IL r)dr, r = l ~ - - W ,  
t /  

r~<a 

v,e (R) = 1 e* (R, r) dr, v,1: (R) + V~o -- - - -  
v v (5 )  

r<a r~a  

~/U(R)= l__v ~u*(R' r) dr, o= 4-~-aa~.3 
r<.a 

Asterisks here denote magnitudes calculated on the assumption that the point R lies within 
a particle whose center lies at the point R'; averaging is carried out according to the posi- 
tions of the centers of the other particles. If these magnitudes are known as functions of 
R, r, and also of the parameters introduced in (4), then we obtain from (5) after integra- 
tion a system of transcendental equations for determining the latter, and this also includes 
the condition of self-consistency of the submitted theory. 

To determine the integrands in (5), we have to solve the elastic and thermal problem 
of a test particle placed in the disperse system under consideration [7-12]. The elastic 
problem is the natural generalization of the problem solved in [i0]: 

--~d'u'(r)=vo'(r) ,  r > a ;  - - ~ u * ( r ) : v  o*(r), r < a ;  
u', s', e'-+O, r - + ~ ;  u*, s*, e * <  c~, r : 0 ;  (6)  

u * = u ~ u ' ,  no*=--n(~+a'), r : a ;  r : R - - R ' .  

Here u', e', e', and T' have the meaning of distortions introduced by the test particle into 
the corresponding mean fields which in the solution of (6) are regarded as specified, the 
tensor a* within the particle is correlated with e*, e*, ~* by an ordinary relation with the 
coefficients kl, BI, and 81, and the tensor ~' is determined by a relation of the type pre- 
sented in (3) in which the coefficients k' = k 0 + (k - k0)p*/p, p' = B0 = (P - P0)P*/P, 8' = 
8o + (8 - 80)9*/9, ~' = ~(0*/P - i), d' = d o + (d - d0)9*/p figure, where 9*(r) is the bulk 
concentration of the inclusions near the test inclusion, dpeending ofn the special features 
of stacking of the inclusions, within the framework of the suggested theory it has to be re- 
garded as a priori known. 

The values of T* and ~' figuring in (6) are found from the solution of the independent 
thermal problem of the test inclusion. Such a problem was dealt with, e.g., in [ii, 12], 
and it is therefore omitted here. 

In the general case the dependence p*(r) is fairly complex, and the mentioned problems 
of the test particles can be solved numerically only; some variants of this dependence were 
dealt with in [9]. However, for systems with moderate concentation of inclusions (up to 
p ~ 0.20-0.25) quite good results are obtained with the approximation 

P*-- 9, (7)  
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corresponding to neglecting the fact that adjacent inclusions cannot overlap. Results that 
are approximately correct for disperse systems with high concentration can be obtained on 
the basis of the model 

i;: o * =  (8) 
' r ~ a .  

Concerning the problem of calculating the elastic and thermoelastic characteristics of com- 
posite materials, such models were used in the past on an empirical basis [13, 14]. 

Before we will assume that the forces of inertia are much smaller than the elastic 
forces, i.e., the left-hand sides in the equations of motion in (3) and (6) may be neglected. 
The conditions of feasibility of this assumption, which are closely connected with the condi- 
tions of correctness of the continual approach, were discussed in [i0]. We will solve an 
analogous thermal problem of a test inclusion in quasisteady approximation (see [ii, 12]). 

Thermoelasticity in the Absence of Heat Sources. In this case the coefficients in (I) 
are equal to zero, and it can be shown that T* = T(R), T' = 0. In the approximation (7) the 
problem (6) reduces to the well-known problem of thermal strain of a sphere situated in an 
unbounded homogeneous medium whose properties coincide with the effective properties of the 
disperse system. The solution of this problem has the form 

u*= Ar, u'= Br/P, 
where the constants of integration are determined from the obvious boundary conditions on 
the surface of the sphere r = a. From the respective equations in (4) and (5) after simple 
calculation we have K = 0 and 

/" k1--h '-~ { [ klq-4~/3 kl--k~ ]}  0+p P1- 0- l (9) 

In the approximation (8) the solution of (6) is written as follows: 

u*=Ar; u':Cr+Br/P, r<2a; u'= Dr/r 3, r>2a, 
where the constants of integration are calculated form the conditions of continuity of the 
vector of displacement and density of the force on the spheres r = a and r = 2a. In this 
case again, x = 0, and instead of (9) we obtain 

~ = (1--p kl--ko)-~{~o+p[~_~o__~,F ~ i ] }  ,k~--ko 
. . . .  (i0) 

r = k~§ (4/3) [8 (3ko+4~) ~o--3 (~ - -  ~o) ~] [8Z(zko§ 4~) § 4 (~ - -  m)] -1. 

The effective modulus of hydrodynamic compression k and the effective shear modulus p 
of the systemwere dealt with in [i0]. From (9) and (i0) there follow the expressions for 
the effective coefficient ~/k of thermal expansion of the disperse system. For a dilute 
system in linear approximation with respect to p we obtain from (9) or (i0) the formula 

= ~o+ (~--~o) ( 1 kl+ 4~o/3k~- ko / P, (ii) 

which coincides with the formula ensuing from [2]. 

If even one of the phases of the system is a viscoelastic body or an elastoviscous 
liquid, then k and p depend on the frequency, regardless of whether the problems of the test 
particle are solved in quasisteady approximation [i0]. This has to do with the fact that 
for viscoelastic bodies, e.g., kj + kj + i~$j and pj + pj + imqj, where qj and Sj are the 
coefficients of shear and bulk viscosity. It is obvious that in this case, too, 8 depends 
on the frequency, i.e., in thermoelastic deformation of the disperse system relaxation phe- 
nomena are of importance. In this connection we will deal more in detail with dilute dis- 
perse systems of which one phase is an ideally elastic body and the other a compressible 
Newtonian liquid. 

Using (ii) and the results of [i0], we come to the conclusion that for the spherical 
part ap of the stress tensor the following equality is correct: 
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On the  b a s i s  of  the  " e l a s t i c - v i s c o e l a s t i c "  ana logy  [6 ] ,  which i s  c o r r e c t  when the  non- 
steady terms in the boundary-value problems of the test particle are neglected, and after 
inverse Fourier transformation for an elastic matrix with spherical cavities filled with a 
viscous liquid, we obtain from (12): 

4 . 0 =[ko (kl+'--~ 

( ) +([~--[~o) k o + - - ~ P , o  p ( I + - - ~  
(13) 

4 Pl (k~+T 
+(kl--k0) k 0 + T ~ 0  p ~1, 

Analogous ly  fo r  the  s u s p e n s i o n o f  e l a s t i c  sphe re s  in a v i s c o u s  l i q u i d  we have 

( ) < 4 no a T2 ~ + r~ s --i~ 1 + T~ %, 1 + 3 kl at ap = k I + at 

4 4 ~o)--~oko)P}(kkl) -~, T: = {~okl+ "~ ~loko+ [(kl, ko) (~+ --~- 

4 ~1o) p](kkl)-, ' (14) 

k = k0+ (k0/k3 (k~-- k0) p, ~ -- ~~ (k0/kl) (~1-- l~0)P. 

I t  can be seen from (13) and (14) in p a r t i c u l a r  t h a t  t he  t h e r m o e l a s t i c  e f f e c t s  do not  
influence the time of relaxation but they determine the time of aftereffect. An analogous 
conclusion may also be applied to systems with higher concentration. 

Thermoe!asticity in the Case 0f Spatial Sources. Let Hj # 0 but L ~ = L z = 0. Such a 
situation arises, e.g., when an electric current passes through composite material, in sys- 
tems containing heat-liberating elements, etc. For the sake of simplification we will deal 
with moderately concentrated media for which (7) is approximately correct. Analogously to 
what was done in [ii, 12], it is expedient to expand the mean temperature T(R) and the dis- 
placement B(R) in the vicinity of the point R' into Taylor series, and then to transform such 
expansions into series in terms of Legendre functions. To obtain the required results it 
suffices to consider the case when all the mean values depend solely on one coordinate which 
we denote z = r cos O, 0 is the polar angle of the system of spherical coordinates. Accord- 
ing to consideration completely analogous to those in [II, 12] it is possible, by solving 
the steady-state thermal problem of the test particle, to find the temperature ~* inside this 
particle and the perturbation of the temperature Y' outside it. Then, solving the boundary- 
value problem (6), we obtain expressions for Ur* and u r' in the form of series in terms of 
Legendre polynomials, and for u8* and u 8' we obtain series in terms of the derivatives of 
these polynomials with respect to O. After that we have to express the mean values figuring 
in these expressions and determined at the point R' through analogous magnitudes in R, cal- 
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culate the integrands in (5) and integrate, and then solve the equations obtained for effec- 
tive coefficients characterizing the deformation of the disperse medium. Omitting all the 
intermediate, extremely cumbersome calculations, we will show that as a result hence follow 
relations (9) for 6, an equation for k coinciding with the one obtained in [i0], and a for- 
mula for x in (3) which is also very cumbersome. We therefore write it for the special case 
only, when p << I, and heat sources are solely inside the inclusions of the disperse phase: 

g = pH:-~- (~: - -  ~o) ~ -  + k,+4po/3 (~ - -  ~o) s 10 k:+4po/3 " 

Thus we a r r i v e  a t  the  fundamenta l ly  important  conc lus ion  t h a t  when the  d i s p e r s e  m a t e r i a l  
contains distributed heat sources, an additional spherical component appears in the tensor 
of effective mean stresses; this describes the origin of an additional positive or negative 
pressure, formally this is connected with the fact that the difference of the mean phase 
temperature even under steady conditions ceases to be proportional to T, and physically it 
means that thermal expansion of any phase leads to the appearance of deformations, and conse- 
quently to corresponding stresses in the other phase. As a result there arises an additional 
mean pressure not "compensated" by deformation; its sign depends on the relations between 
the elastic, thermoelastic, and thermophysical properties of the materials of the phases. 

Thermoelasticity in the Presence of Surface Effects. We now adopt Hj = 0, but L ~ ~ 0, 
L: # 0 in (i). An analysis of such a situation is carried out completely analogously to the 
preceding one, but to obtain the solution of the thermal problem of the test particle we may 
use directly the results of [ii]. Omitting again the cumbersome calculations, we present 
the results for dilute disperse media. The expression for k coincides again with the expres- 
sion obtained in [i0], and for $ and z we have 

~---- J3~ ([~:--~~ ( 1-+- - ~ o  ) e L :  \ - :  (1 

• ~ 1+ Xo / I 

k:-- ko ) 
k:+ 4po/3 P' 

kl-- ko ) 

k1+41~o/3 ' p" 

(16) 

Thus the surface heat sources lead, first of all, to the same effect as bulk sources. 
In addition it turns out that the temperature dependence of the power of the sources affects 
both 8 and ~. 

The demonstrated method can also be applied successfully in the analysis of the influence 
of surface effects of another physical nature on the thermoelastic properties of disperse 
media. Here we will actually examine the influence of surface tension which is important 
in the case of foams and finely disperse emulsions. In this case the expression for the local 
stress tensor in (2) has to be rewritten in the form 

Z = [A divU --BT + ~(RF* -~ RF:) �9 (R)]I +2ME, (17) 

where ~ is the surface tension on the particle surfaces, R 1 and R 2 are their principal radii 
of curvature, 

(R) : ~ 6 (R - -  R j), Rj 6 S j, 

i 
where Sj is the designation of the surface of the j-th particle, ~(x) is a delta function. 
When we average (17) by the standard method with respect to the positions of all particles, 
we obtain the previous expression for a in (3), and instead of the relation ensuring from 
(4), (5) we have 

k e - - ~ : - - •  p,- e*(R, r) dr -- (~:-- ~0 ) p :*(R, r ) d r + g  p 1 + dr. (18) 
v ~ v 

r~a r~a r~a 

The e l a s t i c  problem of the  t e s t  p a r t i c l e  i s  formula ted  comple te ly  ana logous ly  to  (6) 
with a view to the surface pressure contained in the condition of continuity of the surface 
force. Assuming that there are not heat sources, and solving the thermal and elastic problem 
of the test particle by taking into account that there are no steady-state shear stresses 
in liquids and gases, we obtain after some calculations in the approximation (7) of a moder- 
ately concentrated medium the following forraula for 6: 
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~_~ ll _~_ k~--ko-i 2~/a't-! [ ( k~- -ko-i-2a,,'a)] k~--.2~/3a j ~0(i -p)-;-O~ p 1 - - ~  , (19) k,-.~13a ) l 
which a g r e e s  w i t h  (9)  when ~ = O, ~ = O. In  t h e  a p p r o x i m a t i o n  ( 8 ) ,  which i s  s u i t a b l e  f o r  
c o n c e n t r a t e d  s y s t e m s ,  e x a c t l y  t h e  same k i n d  o f  f o r m u l a  i s  o b t a i n e d .  I n  b o t h  c a s e s  • = O. 

The e f f e c t i v e  c o e f f i c i e n t  o f  t h e r m a l  e x p a n s i o n  of  a d i s p e r s e  medium can be d e t e r m i n e d  
as ~ /k ,  i . e . ,  t h e  f o r m u l a  f o r  i t  f o l l o w s  d i r e c t l y  f rom t h e  r e l a t i o n s  f o r  k and B. 

The m a g n i t u d e s  k and ~, d e a l t  w i t h  in  [ lO] and in  t h e  p r e s e n t  a r t i c l e ,  a r e  t h e  e f f e c t i v e  
i s o t h e r m a l  modul i  o f  h y d r o s t a t i c  p r e s s u r e  and s h e a r  o f  t h e  medium. Knowing t h e  e f f e c t i v e  
c o e f f i c i e n t  o f  t h e r m a l  e x p a n s i o n  e n a b l e s  us t o  f i n d  by t h e  o r d i n a r y  r u l e s  [15] t h e  c o r r e s p o n d -  
ing  a d i a b a t i c  modul i  which  a r e  i m p o r t a n t ,  e . g . ,  in  t h e  a n a l y s i s  o f  t h e  p r o p a g a t i o n  o f  a c o u s t i c  
waves in a composite material. 

In conclusion, we note that generalization of the theory to nonsteady heating and defor- 
mation regimes does not pose any fundamental difficulties but it entails calculations that 
are even more cumbersome. If the true nature of the stacking of adjacent particles near any 
isolated one is to be taken into account more rigorously, the corresponding thermal and elas- 
tic problems of the test particle have to be solved numerically. 

NOTATION 

a , particle radius; B, local coefficient of thermoelasticity; D, local density, d, mean 
density; E, e, local and mean strain rate tensor, respectively; H, density of the bulk heat 
sources; I, unit tensor; K, k, local and effective modulus of hydrostatic compression, respec- 
tively; L ~ L l, parameters determining the power of surface heat sources; M, local shear 
modulus; n, unit vector of the normal; Q, power of the heat sources; R, R', radius vectors; 
r = R-- R'; T, local temperature; Te, TT, times of after-effect; t, time; U, u~ local and 
mean displacement vector, respectively; v, volume of the particle; ~, surface tension; ~, 
effective thermoelastic coefficient; F, y, parameters introduced in (i0) and (4), respec- 
tively; e, div u; ~, shear viscosity; ~, additional thermoelastic pressure; l, thermal conduc- 
tivity; D, effective shear modulus; v, parameters in (4) and (5); $, bulk viscosity; p, p*, 
mean and nominal bulk concentration, respectively; Z, ~ local and mean stress tensor, respec- 
tively; Opl, spherical part of g; T, mean temperature; m, frequency; the subscripts 0 and 
1 pertain to the dispersing and the dispersed phases, respectively, an asterisk as super- 
script to magnitudes determined inside the test particle. 
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METHOD OF CALCULATING THE THERMAL CONDUCTIVITY OF POROUS 

GRANULAR MATERIALS WITH METAL FILLER IN DIFFERENT MEDIA 

G. N. Dul'nev, B. L. Muratova, 
T. V. Tribel', Kh. Madzhidov, 
and M. M. Safarov 

UDC 536.2 

The article suggests a method of calculating the thermal conductivity of porous 
granular materials with metallic filler. The results of the calculation are com- 
pared with the experimental data. The error of the calculation is commensurable 
with the error of specifying the initial data. 

To intensify technological processes at high temperatures, porous granulated aluminum 
oxide with metallic filler is used as catalyst. The aluminum oxide is made in the form of 
granules with 0.8-1.25-mm diameter. In dependence on the temperature, the weight concentra- 
tion of the metallic particles nmet, and the composition of the gaseous medium, the thermo- 
physical properties of the material change, and this affects the conditions of its operation. 

Investigation of heat transfer in charges of porous aluminum oxide with metallic filler 
enable us to evaluate the range of change of thermophysical properties in dependences on the 
above parameters. 

We will carry out the analysis on a model in the form of a charge of grains (spheres) 
with the same diameter; the grains themselves have a porous structure, and in the walls of 
the pores and in its surface metal particles are embedded (Fig. i). 

We will consider the processes of heat transfer through such a structure stage by stage. 
At the first stage we evaluate the thermal conductivity of a porous grain of aluminum oxide 
without metal particles, assuming that the pores contain gas. We use the well-known model 
of cracked material whose components form an interpenetrating grid [I]. The thermal conduc- 
tivity of cracked material is determined by the formula 

k' = ~A],O, [c2M + ~ (1-- c)S+ 2vc (1--c)/(wc + 1-- c)], ~ = ~or/kA.,O,, ( 1 ) 

where the parameter c is correlated with bulk porosity by the dependence c = 0.5 - arc cos 
(i - 2m 2) for m 2 < 0.5; M is a parameter characterizing the cracked state of the material. 

The thermal conductivity of the pores is determined by the radiant and molecular heat 
transfer, and it is equal to 

%po, = %r+ ~m. (2) 

The radiant component of thermal conductivity is evaluated by the formula for radiant heat 
exchange between two parallel plates whose degree of blackness is E, and the distance between 
them is ~ (pore size) [i]: 

~r=  o0 (T/100)3%dS, ecd= e/(2-- e). (3) 

The m o l e c u l a r  component  o f  t h e r m a l  c o n d u c t i v i t y  depends  on many p a r a m e t e r s ,  and i t  i s  d e t e r -  
mined by the formula [i] 

~g , B = 4(cv/c~ 2--aAHoPr-X, H 0 = l ' l @ p a -  (4 )  
1+ B/(HS) 1 + (cp/co)" 
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